Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Genom ; 4(1): 100468, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190104

RESUMEN

Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/diagnóstico , Tasa de Filtración Glomerular/genética , Herencia Multifactorial/genética , Riñón/fisiología
2.
medRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425786

RESUMEN

Rationale: Arterial and venous cardiovascular conditions, such as coronary artery disease (CAD), peripheral artery disease (PAD), and venous thromboembolism (VTE), are genetically correlated. Interrogating distinct and overlapping mechanisms may shed new light on disease mechanisms. Objective: In this study, we aimed to: identify and compare (1) epidemiologic and (2) causal, genetic relationships between metabolites and CAD, PAD, and VTE. Methods: We used metabolomic data from 95,402 individuals in the UK Biobank, excluding individuals with prevalent cardiovascular disease. Logistic regression models adjusted for age, sex, genotyping array, first five principal components of ancestry, and statin use estimated the epidemiologic associations of 249 metabolites with incident CAD, PAD, or VTE. Bidirectional two-sample Mendelian randomization (MR) estimated the causal effects between metabolites and cardiovascular phenotypes using genome-wide association summary statistics for metabolites (N = 118,466 from UK Biobank), CAD (N = 184,305 from CARDIoGRAMplusC4D 2015), PAD (N = 243,060 from Million Veterans Project) and VTE (N = 650,119 from Million Veterans Project). Multivariable MR (MVMR) was performed in subsequent analyses. Results: We found that 194, 111, and 69 metabolites were epidemiologically associated (P < 0.001) with CAD, PAD, and VTE, respectively. Metabolomic profiles exhibited variable similarity between disease pairs: CAD and PAD (N = 100 shared associations, R2 = 0.499), CAD and VTE (N = 68, R2 = 0.455), and PAD and VTE (N = 54, R2 = 0.752). MR revealed 28 metabolites that increased risk for both CAD and PAD and 2 metabolites that increased risk for CAD but decreased risk for VTE. Despite strong epidemiologic overlap, no metabolites had a shared genetic relationship between PAD and VTE. MVMR revealed several metabolites with shared causal effects on CAD and PAD related to cholesterol content within very-low-density lipoprotein particles. Conclusions: While common arterial and venous conditions are associated with overlapping metabolomic profiles, MR prioritized the role of remnant cholesterol in arterial diseases but not venous thrombosis.

3.
J Am Coll Cardiol ; 81(18): 1780-1792, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37137588

RESUMEN

BACKGROUND: Lipoprotein(a) (Lp[a]) and oxidized phospholipids (OxPLs) are each independent risk factors for atherosclerotic cardiovascular disease. The extent to which Lp(a) and OxPLs predict coronary artery disease (CAD) severity and outcomes in a contemporary, statin-treated cohort is not well established. OBJECTIVES: This study sought to evaluate the relationships between Lp(a) particle concentration and OxPLs associated with apolipoprotein B (OxPL-apoB) or apolipoprotein(a) (OxPL-apo[a]) with angiographic CAD and cardiovascular outcomes. METHODS: Among 1,098 participants referred for coronary angiography in the CASABLANCA (Catheter Sampled Blood Archive in Cardiovascular Diseases) study, Lp(a), OxPL-apoB, and OxPL-apo(a) were measured. Logistic regression estimated the risk of multivessel coronary stenoses by Lp(a)-related biomarker level. Cox proportional hazards regression estimated the risk of major adverse cardiovascular events (MACEs) (coronary revascularization, nonfatal myocardial infarction, nonfatal stroke, and cardiovascular death) in follow-up. RESULTS: Median Lp(a) was 26.45 nmol/L (IQR: 11.39-89.49 nmol/L). Lp(a), OxPL-apoB, and OxPL-apo(a) were highly correlated (Spearman R ≥0.91 for all pairwise combinations). Lp(a) and OxPL-apoB were associated with multivessel CAD. Odds of multivessel CAD per doubling of Lp(a), OxPL-apoB, and OxPL-apo(a) were 1.10 (95% CI: 1.03-1.18; P = 0.006), 1.18 (95% CI: 1.03-1.34; P = 0.01), and 1.07 (95% CI: 0.99-1.16; P = 0.07), respectively. All biomarkers were associated with cardiovascular events. HRs for MACE per doubling of Lp(a), OxPL-apoB, and OxPL-apo(a) were 1.08 (95% CI: 1.03-1.14; P = 0.001), 1.15 (95% CI: 1.05-1.26; P = 0.004), and 1.07 (95% CI: 1.01-1.14; P = 0.02), respectively. CONCLUSIONS: In patients undergoing coronary angiography, Lp(a) and OxPL-apoB are associated with multivessel CAD. Lp(a), OxPL-apoB, and OxPL-apo(a) are associated with incident cardiovascular events. (Catheter Sampled Blood Archive in Cardiovascular Diseases [CASABLANCA]; NCT00842868).


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Lipoproteína(a) , Fosfolípidos , Apolipoproteínas B , Apolipoproteínas A , Biomarcadores , Apoproteína(a) , Oxidación-Reducción
5.
Circulation ; 146(16): 1225-1242, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36154123

RESUMEN

BACKGROUND: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. METHODS: We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. RESULTS: In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. CONCLUSIONS: Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments.


Asunto(s)
Trombosis , Tromboembolia Venosa , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Trombosis/genética , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/genética
6.
J Am Coll Cardiol ; 79(7): 617-628, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35177190

RESUMEN

BACKGROUND: When indicated, guidelines recommend measurement of lipoprotein(a) for cardiovascular risk assessment. However, temporal variability in lipoprotein(a) is not well understood, and it is unclear if repeat testing may help refine risk prediction of coronary artery disease (CAD). OBJECTIVES: The authors examined the stability of repeat lipoprotein(a) measurements and the association between instability in lipoprotein(a) molar concentration with incident CAD. METHODS: The authors assessed the correlation between baseline and first follow-up measurements of lipoprotein(a) in the UK Biobank (n = 16,017 unrelated individuals). The association between change in lipoprotein(a) molar concentration and incident CAD was assessed among 15,432 participants using Cox proportional hazards models. RESULTS: Baseline and follow-up lipoprotein(a) molar concentration were significantly correlated over a median of 4.42 years (IQR: 3.69-4.93 years; Spearman rho = 0.96; P < 0.0001). The correlation between baseline and follow-up lipoprotein(a) molar concentration were stable across time between measurements of <3 (rho = 0.96), 3-4 (rho = 0.97), 4-5 (rho = 0.96), and >5 years (rho = 0.96). Although there were negligible-to-modest associations between statin use and changes in lipoprotein(a) molar concentration, statin usage was associated with a significant increase in lipoprotein(a) among individuals with baseline levels ≥70 nmol/L. Follow-up lipoprotein(a) molar concentration was significantly associated with risk of incident CAD (HR per 120 nmol/L: 1.32 [95% CI: 1.16-1.50]; P = 0.0002). However, the delta between follow-up and baseline lipoprotein(a) molar concentration was not significantly associated with incident CAD independent of follow-up lipoprotein(a) (P = 0.98). CONCLUSIONS: These findings suggest that, in the absence of therapies substantially altering lipoprotein(a), a single accurate measurement of lipoprotein(a) molar concentration is an efficient method to inform CAD risk.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Factores de Riesgo de Enfermedad Cardiaca , Lipoproteína(a)/sangre , Adulto , Anciano , Biomarcadores/sangre , Enfermedades Cardiovasculares/tratamiento farmacológico , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Masculino , Persona de Mediana Edad , Estudios Prospectivos
7.
Eur Heart J Acute Cardiovasc Care ; 8(8): 755-761, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30033736

RESUMEN

BACKGROUND: The changing landscape of care in the Cardiac Intensive Care Unit (CICU) has prompted efforts to redesign the structure and organization of advanced CICUs. Few studies have quantitatively characterized current demographics, diagnoses, and outcomes in the contemporary CICU. METHODS: We evaluated patients in a prospective observational database, created to support quality improvement and clinical care redesign in an AHA Level 1 (advanced) CICU at Brigham and Women's Hospital, Boston, MA, USA. All consecutive patients (N=2193) admitted from 1 January 2015 to 31 December 2017 were included at the time of admission to the CICU. RESULTS: The median age was 65 years (43% >70 years) and 44% of patients were women. Non-cardiovascular comorbidities were common, including chronic kidney disease (27%), pulmonary disease (22%), and active cancer (13%). Only 7% of CICU admissions were primarily for an acute coronary syndrome, which was the seventh most common individual diagnosis. The top three reasons for admission to the CICU were shock/hypotension (26%), cardiopulmonary arrest (11%), or primary arrhythmia without arrest (9%). Respiratory failure was a primary or major secondary reason for triage to the CICU in 17%. In-hospital mortality was 17.6%. CONCLUSIONS: In a tertiary, academic, advanced CICU, patients are elderly with a high burden of non-cardiovascular comorbid conditions. Care has shifted from ACS toward predominantly shock and cardiac arrest, as well as non-ischemic conditions, and the mortality of these conditions is high. These data may be useful to guide cardiac critical care redesign.


Asunto(s)
Unidades de Cuidados Coronarios/normas , Enfermedad Crítica/enfermería , Cardiopatías/enfermería , Centros de Atención Terciaria/normas , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/epidemiología , Anciano , Anciano de 80 o más Años , Arritmias Cardíacas/epidemiología , Comorbilidad , Cuidados Críticos/normas , Enfermedad Crítica/epidemiología , Femenino , Paro Cardíaco/epidemiología , Cardiopatías/complicaciones , Cardiopatías/epidemiología , Mortalidad Hospitalaria/tendencias , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Admisión del Paciente/tendencias , Estudios Prospectivos , Mejoramiento de la Calidad , Sistema de Registros , Insuficiencia Respiratoria/epidemiología , Choque/epidemiología , Estados Unidos/epidemiología
8.
Nat Med ; 24(3): 304-312, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431742

RESUMEN

Nuclear receptors regulate gene expression in response to environmental cues, but the molecular events governing the cell type specificity of nuclear receptors remain poorly understood. Here we outline a role for a long noncoding RNA (lncRNA) in modulating the cell type-specific actions of liver X receptors (LXRs), sterol-activated nuclear receptors that regulate the expression of genes involved in cholesterol homeostasis and that have been causally linked to the pathogenesis of atherosclerosis. We identify the lncRNA MeXis as an amplifier of LXR-dependent transcription of the gene Abca1, which is critical for regulation of cholesterol efflux. Mice lacking the MeXis gene show reduced Abca1 expression in a tissue-selective manner. Furthermore, loss of MeXis in mouse bone marrow cells alters chromosome architecture at the Abca1 locus, impairs cellular responses to cholesterol overload, and accelerates the development of atherosclerosis. Mechanistic studies reveal that MeXis interacts with and guides promoter binding of the transcriptional coactivator DDX17. The identification of MeXis as a lncRNA modulator of LXR-dependent gene expression expands understanding of the mechanisms underlying cell type-selective actions of nuclear receptors in physiology and disease.


Asunto(s)
Aterosclerosis/genética , Colesterol/metabolismo , ARN Helicasas DEAD-box/genética , Receptores X del Hígado/genética , ARN Largo no Codificante/genética , Transportador 1 de Casete de Unión a ATP/genética , Animales , Células de la Médula Ósea/metabolismo , Colesterol/genética , Regulación de la Expresión Génica/genética , Humanos , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Regiones Promotoras Genéticas , Transcripción Genética
9.
Pediatr Transplant ; 20(8): 1157-1163, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27762491

RESUMEN

NAFLD is a common condition linked to obesity, type 2 diabetes, and metabolic syndrome. Simple hepatic steatosis is a risk factor for inflammatory reactions in the liver (NASH), which may lead to cirrhosis. While the mechanism is unclear, NAFLD and NASH are associated with panhypopituitarism, which in the pediatric population often results from craniopharyngioma or pituitary adenoma and the sequelae of treatment, causing hypothyroidism, adrenal insufficiency, hypogonadotropic hypogonadism, and GH deficiency. Refractory NAFLD in panhypopituitarism may be amenable to GH replacement. Here, we report a pediatric case of NASH secondary to panhypopituitarism from craniopharyngioma, which recurred by 11 months after LDLT. Despite low-dose GH replacement, the patient remained GH deficient. Pubertal dosed GH therapy led to rapid and complete resolution of hepatic steatosis, which we tracked using serial 1 H MRS. Pediatric patients with NASH cirrhosis secondary to panhypopituitarism can be good candidates for liver transplantation, but hormone deficiencies predispose to recurrence after transplant. High-dose GH replacement should be considered in pediatric patients with GH deficiency and recurrent disease. A multidisciplinary team approach is essential for successful outcomes.


Asunto(s)
Hormona de Crecimiento Humana/uso terapéutico , Hipopituitarismo/tratamiento farmacológico , Trasplante de Hígado , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/cirugía , Adolescente , Fibrosis/etiología , Humanos , Hipopituitarismo/complicaciones , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Recurrencia , Resultado del Tratamiento
10.
Nature ; 534(7605): 124-8, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251289

RESUMEN

Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis.


Asunto(s)
Colesterol/metabolismo , Homeostasis/genética , Metabolismo de los Lípidos/genética , Receptores Nucleares Huérfanos/metabolismo , ARN Largo no Codificante/genética , Animales , Colesterol/biosíntesis , Colesterol/sangre , Dieta Occidental , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Homeostasis/efectos de los fármacos , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos/agonistas , ARN Largo no Codificante/biosíntesis , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
12.
J Lipid Res ; 55(6): 1120-30, 2014 06.
Artículo en Inglés | MEDLINE | ID: mdl-24671012

RESUMEN

The liver X receptors (LXRs) are members of the nuclear receptor superfamily that regulate sterol metabolism and inflammation. We sought to identify previously unknown genes regulated by LXRs in macrophages and to determine their contribution to atherogenesis. Here we characterize a novel LXR target gene, the lipopolysaccharide binding protein (LBP) gene. Surprisingly, the ability of LXRs to control LBP expression is cell-type specific, occurring in macrophages but not liver. Treatment of macrophages with oxysterols or loading with modified LDL induces LBP in an LXR-dependent manner, suggesting a potential role for LBP in the cellular response to cholesterol overload. To investigate this further, we performed bone marrow transplant studies. After 18 weeks of Western diet feeding, atherosclerotic lesion burden was assessed revealing markedly smaller lesions in the LBP(-/-) recipients. Furthermore, loss of bone marrow LBP expression increased apoptosis in atherosclerotic lesions as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Supporting in vitro studies with isolated macrophages showed that LBP expression does not affect cholesterol efflux but promotes the survival of macrophages in the setting of cholesterol loading. The LBP gene is a macrophage-specific LXR target that promotes foam cell survival and atherogenesis.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Apoptosis , Aterosclerosis/metabolismo , Proteínas Portadoras/metabolismo , Células Espumosas/metabolismo , Receptores X del Hígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Fase Aguda/genética , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Proteínas Portadoras/genética , Supervivencia Celular/genética , Células Espumosas/patología , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Receptores X del Hígado/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados
13.
J Clin Gastroenterol ; 47 Suppl: S37-42, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23632344

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality in the world. Early detection and timely treatment of HCC is critical for better patient outcomes. Curative therapy consists of surgical hepatic resection or liver transplantation (LTx); however, both are restricted to explicit selective criteria. Liver resection is the gold standard of treatment for noncirrhotic patients but can be done in only a small fraction of cirrhotic patients depending on synthetic dysfunction, degree of portal hypertension, and number and location(s) of tumor(s). Therefore, the best treatment modality in cirrhotic patients with HCC is LTx as it will cure both HCC and the underlying cirrhosis. The limitation to offer transplant to all cirrhotic patients with HCC is the shortage of available donor organs. While these patients are waiting for transplant, their tumors may progress and develop distant metastases and may lead to patients losing their candidacy for LTx. Various ablation therapies can be used to treat HCC, prevent tumor progression, and thus, avoid patients losing the option of LTx. Future directions to improve HCC patient outcomes include advancement in tumor gene analysis and histopathology for better prediction of tumor behavior, improved immunosuppression regimens to reduce tumor recurrence in the posttransplant setting, and efficient use of an expanded donor pool that includes living donor organs. This paper will review the current methods of HCC diagnosis, selection for either hepatic resection or LTx, and will also summarize posttreatment outcomes. We will suggest future directions for the field as we strive to improve outcomes for our HCC patients.


Asunto(s)
Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/cirugía , Trasplante de Hígado , Femenino , Predicción , Hepatectomía , Humanos , Trasplante de Hígado/tendencias , Masculino , Persona de Mediana Edad
14.
Regen Med ; 7(3): 409-19, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22594331

RESUMEN

Since the first tissue-engineered vascular graft (TEVG) was implanted in a child over a decade ago, growth in the field of vascular tissue engineering has been driven by clinical demand for improved vascular prostheses with performance and durability similar to an autologous blood vessel. Great strides were made in pediatric congenital heart surgery using the classical tissue engineering paradigm, and cell seeding of scaffolds in vitro remained the cornerstone of neotissue formation. Our second-generation bone marrow cell-seeded TEVG diverged from tissue engineering dogma with a design that induces the recipient to regenerate vascular tissue in situ. New insights suggest that neovessel development is guided by cell signals derived from both seeded cells and host inflammatory cells that infiltrate the graft. The identification of these signals and the regulatory interactions that influence cell migration, phenotype and extracellular matrix deposition during TEVG remodeling are yielding a next-generation TEVG engineered to guide neotissue regeneration without the use of seeded cells. These developments represent steady progress towards our goal of an off-the-shelf tissue-engineered vascular conduit for pediatric congenital heart surgery.


Asunto(s)
Prótesis Vascular , Cardiopatías Congénitas/terapia , Investigación Biomédica Traslacional , Animales , Ensayos Clínicos como Asunto , Salud , Humanos , Neovascularización Fisiológica
15.
Cell ; 148(4): 716-26, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341444

RESUMEN

Mitochondrial dysfunction causes poorly understood tissue-specific pathology stemming from primary defects in respiration, coupled with altered reactive oxygen species (ROS), metabolic signaling, and apoptosis. The A1555G mtDNA mutation that causes maternally inherited deafness disrupts mitochondrial ribosome function, in part, via increased methylation of the mitochondrial 12S rRNA by the methyltransferase mtTFB1. In patient-derived A1555G cells, we show that 12S rRNA hypermethylation causes ROS-dependent activation of AMP kinase and the proapoptotic nuclear transcription factor E2F1. This retrograde mitochondrial-stress relay is operative in vivo, as transgenic-mtTFB1 mice exhibit enhanced 12S rRNA methylation in multiple tissues, increased E2F1 and apoptosis in the stria vascularis and spiral ganglion neurons of the inner ear, and progressive E2F1-dependent hearing loss. This mouse mitochondrial disease model provides a robust platform for deciphering the complex tissue specificity of human mitochondrial-based disorders, as well as the precise pathogenic mechanism of maternally inherited deafness and its exacerbation by environmental factors.


Asunto(s)
Sordera/metabolismo , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/metabolismo , Animales , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oído Interno/patología , Ganglión/patología , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Neuronas/patología , ARN Ribosómico/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...